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Abstract 12 

Estimates of top of the atmosphere (TOA) radiative flux are essential for the understanding of 13 

Earth’s energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are 14 

among the most important atmospheric agents impacting the Earth’s short-wave (SW) 15 

radiation budget. There are several sensors in orbit that provide independent information 16 

related to these parameters. Having coincident information from these sensors is important for 17 

understanding their potential contributions. The A-train constellation of satellites provides a 18 

unique opportunity to analyze near-simultaneous data from several of these sensors. In this 19 

paper, retrievals of cloud/aerosols parameters and total column ozone (TCO) from the Aura 20 

Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's 21 

Radiant Energy System (CERES) estimates of TOA SW flux (SWF). We use these data to 22 

develop a variety of neural networks that estimate TOA SWF globally over ocean and land 23 

using only OMI data as inputs. OMI-estimated TOA SWF reproduces the independent 24 

CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is 25 

consistently within ±1% of CERES throughout the year 2007. Application of our neural 26 

network to other ultraviolet sensors, both past and future, may provide unique estimates of 27 

TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) 28 

series could provide estimates of TOA SWF dating back to late 1978. 29 
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1 Introduction 1 

The Earth’s energy budget constrains the general circulation of the atmosphere and 2 

determines the climate of the Earth-Atmosphere system; it is therefore also an indicator of 3 

possible climate changes (Hatzianastassiou, et al., 2004). There is a long history of attempts to 4 

estimate Earth’s albedo and energy budget (Dines, 1917; Hartmann et al., 1986). With the 5 

advent of the satellite remote sensing era, it became possible to directly measure the albedo of 6 

the Earth. Subsequently, the shortwave energy balance at the TOA and the role of clouds, 7 

aerosols, and trace gases has been studied using satellite measurements (Ramanathan et al., 8 

1989; Yu et al., 2006; Bellouin et al., 2005; Loeb et al., 2005; Patadia et al., 2008; Joiner et 9 

al., 2009).  10 

The Earth Radiation Budget Experiment (ERBE) was launched in October 1984 by the space 11 

shuttle Challenger and provided long- and short-wave (SW) radiation parameter 12 

measurements. Top-of-atmosphere short-wave (TOA SW) radiative parameter estimates from 13 

ERBE (Barkstrom, 1984), Barkstrom and Smith (1986) showed that clouds approximately 14 

double the albedo of Earth from an estimated clear-sky value of 0.15 to its average all-sky 15 

value of 0.3 (Ramanathan et al., 1989; Harrison et al., 1990). The next generation of 16 

broadband instruments, the Cloud and the Earth’s Radiant Energy System (CERES), draws 17 

heavily on ERBE heritage. Since its first launch in 1997 onboard the NASA Tropical Rainfall 18 

Measurement Mission (TRMM), CERES has provided continuous observations that can be 19 

used to understand the role of clouds and the energy cycle in global climate change (Wielicki 20 

et al., 1995; Loeb et al., 2012).  21 

Continuous and coincident measurements of radiative fluxes and atmospheric components 22 

facilitate research studies to estimate and understand the role of different atmospheric 23 

components on the planetary energy balance. Although CERES provides state-of-art estimates 24 

of TOA radiative fluxes, it does not make measurements of individual atmospheric 25 

components that impact those fluxes. Several studies have utilized aerosol and cloud 26 

information from high spatial resolution MODerate resolution Imaging Spectroradiometer 27 

(MODIS) measurements to quantify their impact on TOA fluxes (Yu et al., 2006; Patadia et 28 

al., 2008; Zhang et al., 2005b; Loeb et al., 2005; Oreopoulos et al., 2009). Several attempts 29 

have also been made to convert narrowband radiances into broadband fluxes using regression 30 

or more sophisticated statistical approaches (Chevallier et al., 1998; Hu et al., 2002; 31 

Domenech and Wehr 2011; Vázquez-Navarro et al., 2012).  32 
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The Ozone Monitoring Instrument (OMI), flying on NASA’s Aura satellite since 2004, 1 

provides information about components important for the Earth’s SW radiation budget 2 

including the effective cloud/aerosol fraction (Stammes et al., 2008; Joiner and Vasilkov, 3 

2006) and total column ozone (TCO) (Veefkind et al., 2006; McPeters et al., 2008; Kroon et 4 

al., 2008). OMI-retrieved parameters can be utilized to understand their role in the Earth’s SW 5 

energy budget. 6 

To model the spatial and temporal distribution of the TOA short-wave flux (SWF) requires a 7 

description of the components that control the transfer of solar radiation within the Earth-8 

Atmosphere system. When required parameters are missing or incomplete, a statistical 9 

approach is an alternative for estimation of TOA SWF. Here, we develop an artificial neural 10 

network (NN) model to estimate TOA SWF. Artificial neural networks are algorithms that 11 

simulate biological neural networks by learning and pattern recognition (Bishop, 1995). NNs 12 

have been used by many scientific disciplines, including Earth science, to identify patterns 13 

and extract trends in imprecise and complicated non-linear data (e.g., Lee et al., 1990; Gupta 14 

and Christopher, 2009). In radiation studies, NNs have been used to estimate TOA and 15 

surface short-wave fluxes based on radiative transfer calculations with or without data from 16 

satellites (e.g., Krasnopolsky  et al., 2008, 2010; Takenaka et al., 2011; Vázquez-Navarro et 17 

al., 2012; Jiang et al., 2014). CERES TOA flux algorithms have also used NNs to generate 18 

Angular Distribution Models (ADMs) in the absence of sufficient high-resolution imager 19 

information for reliable scene identification (Loukachine and Loeb, 2003; 2004). 20 

In this study, we utilize OMI cloud, and ozone products along with other ancillary data to 21 

estimate TOA SWF. We develop NNs that take OMI-derived quantities as inputs and provide 22 

CERES-equivalent TOA SWF as the output. The trained NN models are optimized to run 23 

with data sets from OMI or similar sensors and can be applied generally to different seasons 24 

and years. For example, the neural network-based models we develop here can be applied to 25 

similar measurements from the Total Ozone Mapping Spectrometer (TOMS) instruments. The 26 

main objective of this study is to assess how well TOA SWF can be estimated using OMI 27 

cloud and ozone products with NNs when CERES data are used for training. The developed 28 

NNs can then be applied to other instruments with similar accuracy.  29 

The paper is organized as follows: Section 2 describes the various satellite data sets utilized in 30 

the study. Section 3 discusses the development of NN models including the selection of input 31 
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parameters. Section 4 evaluates our NN estimation of TOA SWF using independent CERES 1 

data over ocean and land. Section 5 summarizes the results and discusses future work. 2 

2 Satellite Data Sets and Coincident Sampling 3 

Under clear-sky conditions, TOA SWF is affected by the Earth’s surface properties, 4 

atmospheric absorbers such as water vapor, ozone, and aerosols, and scattering by air 5 

molecules and aerosols particles. Over ocean, surface properties can be characterized by 6 

ocean color and roughness of the ocean surface. Under cloudy sky conditions, cloud optical 7 

properties such as the cloud optical thickness, geometrical cloud fraction, effective radius, and 8 

phase function affect TOA SWF. In clear and cloudy skies, the solar zenith angle (SZA) and 9 

Sun-Earth distance (SED) impact the TOA SWF. 10 

In this work, we make use of data sets mainly from two passive sensors in A-train 11 

constellation of satellites that fly within 15 minutes of each other: 1) Aura OMI with an 12 

equatorial crossing time of ~13:45 ± 15 minutes local time and 2) Aqua CERES with an 13 

equatorial crossing time of ~13:30 local time. We primarily use 2007 data over global oceans 14 

for the training, testing, and validation of neural network models. Starting around 2008, OMI 15 

experienced an anomaly presumably due to material outside the sensor that adversely affects 16 

the quality of the level 1B and level 2 data products in a portion of its 60 rows across the 17 

swath. Our study focuses on data in 2007 that are not significantly affected by these 18 

anomalies. 19 

2.1.1 CERES 20 

The first CERES instrument flew on the TRMM satellite, launched in November 1997, and 21 

provided data until 2000. Five CERES instruments are currently operating; two on NASA’s 22 

Terra satellite (FM1 and FM2), two on NASA’s Aqua satellite (FM3 and FM4), and one on 23 

the Suomi National Polar-orbiting Partnership (NPP) satellite (FM5). These CERES 24 

instruments provide radiometric measurements of the Earth's atmosphere from three 25 

broadband channels: 1) A shortwave channel to measure reflected sun light (0.3-5 µm), 2) a 26 

long wave channel to measure Earth-emitted thermal radiation in the window region (8-12 27 

µm), and 3) a total channel to measure radiation from 0.3 to 200 µm.  28 

CERES radiances are converted to TOA fluxes using angular dependent models (ADMs). The 29 

CERES science team has an extensive database of ADM’s for clear- and cloudy-sky over both 30 

land and ocean (Loeb et al., 2005). The ADMs heavily depend upon the observed scene type 31 
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and are sensitive to surface characteristics as well as cloud and aerosol optical properties 1 

(Loeb et al., 2003; Zhang et al., 2005a; Patadia et al., 2011). The ADMs over ocean are 2 

dependent upon wind speed and aerosol optical thickness along with sun-satellite geometry 3 

(Zhang et al., 2005a).  4 

The Aqua spacecraft carries two identical CERES instruments: one operates in a cross-track 5 

scan mode (FM3) and the other in a biaxial scan mode (FM4). Measurements from the biaxial 6 

scan mode were used to develop the ADMs; this provided considerable improvement over the 7 

previous generation of instruments including the ERBE (Loeb et al., 2003; 2007).  8 

This study uses the Single Scanner Footprint (SSF, Edition 3A) TOA SWF obtained from the 9 

Aqua CERES FM3. The SSF product is a merge of CERES parameters with coincident cloud 10 

and aerosol parameters derived from the Aqua MODIS (Loeb et al., 2003). The high-11 

resolution (1x1 km2 at nadir) MODIS imager data are used to characterize the clear and 12 

cloudy portions of the larger CERES pixel (20x20 km2 at nadir). 13 

 2.2 OMI 14 

OMI provides hyper-spectral measurements of Earth-backscattered sunlight from UV to 15 

visible wavelengths (~270-500 nm) with a spectral resolution of the order of 0.5 nm (Levelt et 16 

al., 2006). Its spatial resolution is 13x24 km2 at nadir with a swath width of about 2600 km. 17 

Cloud, aerosol, and total column ozone (TCO) products from OMI are used in this study.  18 

Specifically, the cloud-aerosol Optical Centroid Pressure (OCP), effective cloud fraction (fc), 19 

Lambertian-Equivalent Reflectivity (LER) at 354.1 nm, Solar Zenith Angle (SZA), Relative 20 

Azimuth Angle (RAA), and Viewing Zenith Angle (VZA) are obtained from the OMI cloud 21 

products as detailed below, and Aerosol Index (AI) and TCO are obtained from the OMI-22 

TOMS total ozone product (OMTO3, version 8.5, collection 3) (McPeters et al., 2008). 23 

Cloud-aerosol OCP, also known as effective cloud pressure, is a measure of the reflectance-24 

weighted pressure reached by incoming solar photons (Joiner et al., 2012). It is distinct from 25 

the cloud-top pressure (CTP). While CTP is the more important parameter needed for TOA 26 

long-wave flux, OCP is more related to atmospheric absorption in the short-wave. OCP is 27 

derived from OMI observations using two different methods (Stammes et al., 2008): 1) 28 

filling-in of solar Fraunhofer lines from rotational-Raman (RR) scattering in the UV (the 29 

OMCLDRR product) (Joiner and Bhartia, 1995; Joiner et al., 2004) and 2) collision-induced 30 

oxygen absorption (O2-O2) at 477 nm (the OMCLDO2 product) (Stammes et al., 2008; 31 
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Acarreta et al., 2004). Unless otherwise specified, we use the fc and OCP from OMCLDRR 1 

product here. 2 

OMI cloud and trace-gas algorithms use a simplified mixed Lambertian cloud model to 3 

estimate observed radiances Im. In this scenario, a pixel is modeled as a having components 4 

from clear and cloudy sub-pixel weighted using an effective cloud fraction fc, i.e.,  5 

𝐼! =    𝐼!   1− 𝑓! +   𝐼!𝑓!                                                                                                                                                                                                                  1  

where Ig and Ic are the radiances computed in the Rayleigh atmosphere for Lambertian 6 

surfaces corresponding to the clear and cloudy portions of the scene, respectively; fc is defined 7 

as the fraction of the Lambertian cloud covering the pixel and is related to both the geometric 8 

cloud fraction and cloud optical thickness. It contains information similar to the Lambertian-9 

equivalent reflectivity of the scene (related to cloud and surface reflectivities). However, 10 

because it attempts to account for variations in the Earth’s surface reflectivity, it is a more 11 

spectrally invariant quantity and therefore potentially more highly correlated with TOA SWF. 12 

Formally, the effective cloud fraction is wavelength-dependent because it is defined by 13 

spectral quantities (Stammes et al., 2008). We conducted a simulation experiment to evaluate 14 

the wavelength dependence of fc. In this experiment, we simulate observed TOA radiances as 15 

a weighted sum of the clear-sky and cloudy radiances, i.e., 16 

𝐼! =    𝐼!   1− 𝑓! +   𝐼!×𝑓!                                                                                                                                                                                                           2  

where Ic is the cloudy radiance computed with a plane-parallel cloud model that depends on 17 

cloud optical thickness, and fg  is the geometrical cloud fraction.  In our simulation, clouds 18 

have a vertically uniform distribution of the extinction coefficient and phase function. We use 19 

a cloud top height of 5 km and a cloud layer thickness of 1 km. The assumed cloud optical 20 

depth of 20 is spectrally-independent within the 320-1400 nm wavelength range. The 21 

spectrally-independent optical thickness is a good approximation for clouds with sufficiently 22 

large particles (Deirmendjian, 1969). We neglect gaseous absorption in the specified spectral 23 

range. Three models of cloud phase function are used: 1) ice crystals with an effective 24 

diameter of 60 µm  (Baum et al., 2014), 2) C1 water droplets with an effective diameter of 12 25 

µm (Deirmendjian, 1969), and 3) the Heneye-Greenstein (HG) model (e.g. van de Hulst and 26 

Irvine, 1963) with an asymmetry parameter of 0.85. We use a simplified model of the spectral 27 

ground reflectance: Rg = 0.05 at λ<700 µm, Rg = 0.2 at λ>700 µm. We then calculate fc by 28 
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inverting Eq. 1 assuming a Lambertian cloud with a reflectivity of 0.8; this is commonly used 1 

for trace-gas algorithms (Stammes et al., 2008). 2 

Figure 1 shows the spectral dependence of fc calculated for fg  =0.5, SZA = 450, and at nadir 3 

for the three phase functions assuming a cloud single scattering albedo of unity. It can be seen 4 

that fc is nearly invariant with wavelength over a wide spectral range; it changes by only a few 5 

percent even for the steep change in the ground reflectance (simulating the so-called red-edge) 6 

at 700 nm. This result holds when other input parameters in our simulation are varied. The 7 

near spectral invariance of fc suggests that it will be highly correlated with TOA SWF and 8 

thus a good predictor in a statistical model of TOA SWF.   9 

We have used the following modified cloud fraction parameter, fc_mod, as a predictor to 10 

estimate TOA short wave flux: 11 

 𝑓!_!"# = 𝑓!× cos(𝑆𝑍𝐴)× 1
𝑆𝐸𝐷!  12 

where SED is the sun-Earth distance. The modification accounts for variation in the incoming 13 

solar irradiance. If SED is excluded from the input parameters, this creates time-dependent 14 

biases in the estimated TOA SWF.   Figure 2 demonstrates that the relationship between TOA 15 

SWF and fc_mod is highly linear and that this single parameter captures much of the variability 16 

in TOA SWF. 17 

2.3 Ancillary Data 18 

In addition to OMI data, a SeaWiFs-derived chlorophyll concentration (Chl) climatology is 19 

used as an input predictor when fc < 1. The Precipitable Water (PW) and 2 m surface wind 20 

speed (Wind) are also used as predictors; these are provided in the CERES SSF data set and 21 

are taken from the GEOS 4 reanalysis (Bloom et al., 2005). 22 

2.4 Coincident Sampling of OMI and CERES 23 

Because the sizes of the OMI (13 km x 24 km) and CERES (20 km2) pixels are similar at 24 

nadir, we perform a simple spatial collocation by finding the closest CERES pixel 25 

corresponding to each OMI pixel. OMI and CERES collocated pixels are only included in our 26 

training and validation samples when the distance between centers of OMI and CERES pixels 27 

is less than 20 km. We examine the frequency distribution of the distance between OMI and 28 

CERES pixels of all the collocated data sets and found that most of the collocated data (98% 29 

and 60%) have distances less than 20km and 10km, respectively. We do not include pixels 30 
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with viewing zenith angles > 60o.  At these angles, OMI and CERES pixels become 1 

significantly larger (~150 km for OMI and ~200 km for CERES in the cross track direction) 2 

and may contain different scene types. We also mask OMI pixels with AI > 1 to avoid heavy 3 

absorbing aerosol loaded scenes where the fc and OCP are known to contain errors (Vasilkov 4 

et al., 2008). The quality-controlled collocated data are averaged on equal latitude and 5 

longitude grids of 1o x 1o for training, testing, and validation of the neural networks. 6 

Although the NN training includes data from CERES and other ancillary data sets but the 7 

trained NN provides TOA SWF similar to CERES using predominantly retrievals from OMI 8 

measurements. Therefore, the NN produced TOA SWF flux will be referred as OMI estimated 9 

SWF throughout the manuscript. 10 

 11 

3 Artificial Neural Network Model 12 

3.1 General NN architecture and training approach 13 

The general neural network architecture has three layers of neurons: an input layer, a hidden 14 

layer, and an output layer with standard multi-layer network architecture. We use the same 15 

number of neurons in the hidden layer as in the input layer as this produced generally good 16 

result. The input layer has an identity activation function; all other layers are connected by a 17 

sigmoid activation functions (Equation 3). 18 

𝑦 𝑥 =
1

1+ 𝑒!!                                                                                                                                                                                                                                     (3) 

The network normalizes both input and output data sets with a unique linear mapping for each 19 

input and output parameter.  Figure 3 provides an example of a schematic of the network used 20 

in our study. Here we used two different NN models: one with nine nodes or parameters 21 

(NNM1) and a second with seven nodes (NNM2) in the input layer. Both of these models 22 

have one node (TOA SWF) in the output layer. Figure 3 also lists the input parameters 23 

corresponding to the NNM1 and NNM2 models. The NNM1 model is optimized for ocean 24 

cases where the OMI fc < 1.0, whereas NNM2 is optimized for cases where fc = 1 (saturated 25 

cases).  26 

Neural network-based models require optimized training to produce accurate outputs. Here we 27 

use a standard back propagation training algorithm (Hertz et al., 1991), where inputs are 28 

iteratively sent to the neural network. In back propagation, the hidden layer weights 29 
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associated with each input parameter are modified through the training process that minimizes 1 

errors between the targets and outputs (Bishop, 1995; Gardner and Dorling, 1998). After each 2 

iteration, the error is propagated backward through the network and weights are modified to 3 

bring the actual response of the network closer to the desired output in a statistical sense. The 4 

function minimized during the training is a sum of squared errors of each output for each 5 

training pattern. Once the network is trained, it can be evaluated using independent data (i.e., 6 

not used in the training data set). 7 

3.2 Impact of different input parameters 8 

Here we examine the impact of using various input parameters on the derived neural 9 

networks. This exercise is performed using data with fc < 1 with one month of the data over 10 

ocean (January 2007). Table 1 presents the performance of eight different NNMs, denoted 11 

models a through h, with various input parameters listed in Table 1 and described in more 12 

detail in sections 3.2.1-3.2.2.  13 

3.2.1 Inclusion of OMI UV-derived parameters 14 

In model a, we have combined the effects of SZA, SED and fc into a single input parameter 15 

called fc_mod, which is defined in the section 2.2. Use of this modified input parameter alone 16 

explains about 94% (R=0.97) of the variability in TOA SWF. As we add other parameters in 17 

models b to h, we observe small improvements in the OMI-estimated TOA SWF. Figure 4 18 

shows the spatial distribution of monthly mean OMI-CERES SWF differences for these 19 

models. 20 

The TOA SWF is estimated from a measured radiance and therefore the observational 21 

geometry factors in. The addition of satellite viewing geometry parameters (VZA, RAA) to 22 

model a provides improvements in areas of high biases and reduces the standard deviation 23 

from 37.1 Wm-2 to 31.4 Wm-2. Model c tests the ability of 354 nm reflectivity (LER) to 24 

predict TOA SWF in place of fc_mod. Although the statistical parameters in table 1 25 

corresponding to models b and c are very similar, we note spatial differences in the OMI-26 

CERES TOA SWF in Figure 4. Further analysis reveals that the fc-based model b provides 27 

more accurate flux estimation as compared with the LER-based model for a larger range of 28 

fluxes.  29 

The inclusion of TCO (model d) as an input parameter positively impacts TOA SWF 30 

estimation as shown in Figure 4 (d); the high positive biases in the tropical Pacific and Indian 31 
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oceans and in the region near 60oN have been reduced. The percentage of monthly mean 1 

OMI-CERES data that falls within ±8% increases from 91% in model c to 94% in model d.  2 

Model e adds cloud OCP to the input parameters included in model b. OCP also improves 3 

SWF estimates; the regions where improvement occurs are different from those improved by 4 

using TCO. Model f shows that when TCO and OCP are used together as input parameters, 5 

there is further improvement in SWF estimation. Although the global statistics in table 1 do 6 

not clearly reflect this improvement, Figure 4(f) shows that inclusion of OCP and O3 reduces 7 

biases in many regions, most prominently in the tropics. The percentage of total OMI samples 8 

(monthly mean) within ±8% of CERES increases from 92% in model b to 95% in model f. 9 

Apart from these parameters, we also evaluated the inclusion of AI as an input parameter (not 10 

shown here). We found that overall it does not significantly improve the results; however it 11 

does provide some improvement in regions with high AI values. 12 

3.2.2 Addition of meteorological and other ancillary data 13 

The impact of surface winds and total column water vapor (model g in Figure 4g) is more 14 

prominent in the tropics than in other regions. Inclusion of chlorophyll and LERs in model h 15 

removes some of the notable low biases in TOA SWF near the coast of Northern China, 16 

Caspian Sea, and Black Sea. Furthermore, model h corrects for negative biases in areas with 17 

high TOA SWFs, most likely due to the inclusion of LER. The model h produces 89% (99%) 18 

of OMI-estimated monthly mean TOA SWFs within ±5% (±12%) of CERES and is best of 19 

the eight models. 20 

3.3 Consistency over time  21 

We next examine the performance of the NN model h with respect to different input samples. 22 

Figure 5(a-b) presents the results from two different years over ocean. We first examine the 23 

robustness of the NN for detection of inter-annual variability. In this exercise, we trained with 24 

data from the first 15 days of January 2007 as above, and applied it to data from the entire 25 

months of January 2007 (Figure 5a) and January 2006 (Figure 5b). Figure 5a and b shows that 26 

the NN performance is consistent between years.  Although the number of samples in January 27 

of 2006 and 2007 is a bit different, the NN model produces similar statistics. The color of 28 

each coincident pair (10x10 Wm-2 intervals) represents the density (%) of the matchup. The 29 

solid black 1 to 1 line is shown with three dotted lines on both sides that represent envelopes 30 

of ±5%, ±10%, and ±15% OMI-CERES differences. 31 
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In the next test, we applied the same model (trained on January 2007) to July 2007. In this 1 

case, results were degraded as compared with application to January data. We then trained the 2 

same network (with the same input parameters) using a subset of data from July 2007 and 3 

applied it to the entire month of July 2007. Results were similar to those of training and 4 

application to January. This exercise suggests that we may need to use different models for 5 

different months or expand our training data set for application to different months.  6 

We next use data from the 1st day of each month of 2007 for training and data from the 16th 7 

day of each month of 2007 for evaluation and gridded the data at 1o latitude by 1o longitude 8 

resolution. The comparisons with CERES using the training and validation data are consistent 9 

as shown in Figure 6. The mean bias in both training and validation data sets is close to zero 10 

whereas standard deviation remains stable and close to 30 Wm-2 in two independent model 11 

runs. The almost identical values of statistical parameters for training and validation data 12 

demonstrate that the neural network has been well trained. For example, there is a high degree 13 

of linear correlation (R = 0.98 or R2 =0.96) and slopes close to 1 (0.96) in both training and 14 

validation comparisons. Further analysis shows that 83%, 70% and 43% of TOA SWF 15 

estimated from OMI (training and validation data combine) lie within the 15%, 10%, and 5% 16 

of the CERES TOA SWF, respectively. The global standard deviation of the daily OMI-17 

CERES is about 30 Wm-2. 18 

Further evaluation of the entire year reveals that this NN is appropriate for all months. 19 

Therefore this model will be used for subsequent analysis in this study. Creating more 20 

networks as a function of scene type or for different latitude belts or even for different 21 

months/seasons will improve results in certain regions. However, based on our results, we 22 

simplified the approach by minimizing the number of networks. 23 

3.4 Case of fc =1 24 

About 1-2 % of total coincident data correspond to fc = 1, typical of overcast conditions with 25 

optically thick clouds. These cases were modeled using a simpler neural network model with 26 

inputs of LER, SZA, VZA, RAA, OCP, O3, and PW, the surface-related parameters (surface 27 

wind speed and chlorophyll content) do not produce a significant impact for ECF=1 and have 28 

therefore been removed. Subsequent results use combined output from the two separate 29 

models for fc <1 and fc =1. 30 

 31 
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4 Results and Discussion 1 

4.1  Bias and RMSE as a function of effective cloud fraction 2 

Figure 7 presents the Root Mean Square Error (RMSE), RMSE Normalized by CERES flux 3 

(NRMSE in %), data sample (%), and bias (%) for 5% ECF bins. This analysis includes both 4 

training and validation data as presented in Figure 6. The RMSE varies between about 24-35 5 

Wm-2 and continuously increases with cloud fraction (and observed flux). The NRMSE, on 6 

the other hand, continuously decreases with ECF from about 18% for 5% ECF to ~6% for 7 

overcast conditions. The bias represents the mean error (in %) for each ECF bin. The mean 8 

global bias shows more variability than RMSE and is highest (2.9%) for about 10% ECF. The 9 

bias decreases sharply from 2.9% at fc =0.1 to about 1.2% at fc =0.4. The bias remains low 10 

(<1.2%) for fc > 0.4 (usually associated with frontal or deep convective clouds). The higher 11 

biases for lower fc (usually associated with thin cirrus and broken clouds) are likely related to 12 

higher noise and uncertainties in OMI cloud parameters.  For example, (Joiner et al., 2012) 13 

showed that cloud OCP errors increase with decreasing fc. The biases may also be related to 14 

absorbing aerosol in the scene, particularly when it overlies clouds. This will be illustrated in 15 

more detail below as we show spatial variations in OMI-CERES differences. 16 

4.2 Effects of Spatial and Temporal Averaging 17 

In order to evaluate the NN performance at different spatial and temporal scales similar to 18 

those used by the climate community, we use data from July 2007. Figure 8 presents a 19 

comparison of daily CERES and OMI TOA SWF over ocean for 6 spatial scales: the OMI 20 

native pixel (13x24 km2 at nadir) and 0.5o, 1o, 2o, 5o, and 10o gridded spatial resolutions. 21 

Statistical parameters for these comparisons are reported in Table 2. As expected, the pixel 22 

level data are much noisier than the gridded data owing to collocation noise in partly cloudy 23 

cases, but the slope (0.96) is still close to 1, and the linear correlation coefficient is 0.96 with a 24 

standard deviation of 47.7 Wm-2. Below 300 Wm-2, where the sample density is highest, the 25 

NN slightly underestimates the CERES SWF. The mean bias of the OMI-estimated SWF with 26 

respect to CERES is -1.4 Wm-2. This bias may be due to a combination of effects including 27 

uncertainties in the input parameters as well as the limitations of the NN model itself. For 28 

example, we have excluded pixels with a clear signature of absorbing aerosols (OMI derived 29 

UV aerosol index > 1) where OMI effective cloud fractions and pressures may be in error in 30 

both the training and validation data. However, in some regions where smoke and dust 31 

overlaying clouds is common (e.g., west coast of Africa), pixels with erroneous cloud 32 
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fractions owing to small amounts of absorbing aerosol may be present in both the training and 1 

validation data. This may produce errors in the NN model and will be examined in more detail 2 

below.  3 

For the daily data, as the spatial averaging scales increase from 0.5o to 10o, the OMI-estimated 4 

SWF becomes almost identical to CERES; the correlation coefficient increases from 0.97 to 5 

0.99, and the slope increases from 0.96 to 0.97. The percentage of OMI data that falls within 6 

±5% of CERES increases from 37% for 0.5o to 69% for 10o grids. About 87% percent of 7 

OMI-estimated 2o gridded daily mean TOA SWFs are within 15% of CERES data.  8 

Figure 9(a-d) shows 2D histograms of monthly mean gridded data over ocean at 0.5o, 1o, 2o, 9 

and 5o spatial resolutions, respectively. The monthly inter-comparisons of OMI and CERES 10 

SWF show excellent agreement at all spatial resolutions with correlation coefficients of 0.99 11 

and slopes of 0.98 (Table 2). The global mean biases vary between -1.8 and 0.25 Wm-2. The 12 

standard deviations vary between 6.6 and 12.9 Wm-2 for the different spatial resolutions. 13 

Ninety seven percent of monthly mean 1o OMI estimated TOA SWFs are within 15% of those 14 

derived from CERES, and 93% are within 10%.  15 

 4.3 Spatial Distribution of TOA SWFs over ocean 16 

Figure 10 presents the spatial distribution of 1o monthly mean (July 2007) TOA SWF from 17 

CERES (Fig. 10a) and the difference with the OMI in Wm-2 (Fig. 10b) and percent difference 18 

(Fig. 10c).  There are subtle differences between the NN and CERES estimates of TOA SWF 19 

as shown in Figure 10b and c. The OMI-CERES histograms (Fig. 10d) show that for 44% 20 

(79%) samples, NN fluxes are within ±2 (±5) % of CERES fluxes. About 9% of the samples 21 

have biases of ±8% or more. Overall, the northern hemisphere shows better agreement than 22 

southern hemisphere during July (boreal summer). This could be due to larger errors in the 23 

OMI cloud products at higher solar zenith angles. The low biases on the west coast of Africa 24 

may be due to the presence of absorbing aerosols, particularly when they occur over clouds. 25 

The striped pattern in the southern hemisphere (latitudes >40S) is mainly associated with high 26 

viewing zenith angles in conjunction with high solar zenith angles that occur on one side of 27 

the swath. 28 

Figure 11 similarly shows differences between CERES and OMI TOA SWF over ocean 29 

derived using fc and OCP from the OMI O2-O2 product in place of the OMI RRS product. 30 

Because there are slight differences in the two cloud products, we retrained the network with 31 
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OMI O2-O2 cloud parameters to be consistent. The use of the O2-O2 fc and OCP improves 1 

the accuracy of the estimated TOA SWF. The regions of improvement include the west coasts 2 

of South America and southern Africa and some parts of Indian Ocean. The O2-O2 cloud 3 

product, which uses visible wavelengths, is less affected by absorbing aerosol; this may 4 

explain the improvement in these areas where absorbing aerosol, especially over clouds, is 5 

common. However, negative biases remain over large regions off the west coast of Africa.  6 

Figure 12a shows a time series of daily global mean values of TOA SWF over ocean from 7 

OMI and CERES for 2007. Both instruments show almost identical daily variations with 8 

differences within ±1%. Figure 12b, c provides monthly averaged (July 2007) CERES and 9 

OMI zonal and meridional means of TOA SWF. The OMI-derived TOA SWF is able to well 10 

reproduce the variability shown in the CERES data.  11 

4.4 Spatial Distribution of TOA SWFs over Land 12 

We developed a land NN model that utilizes most of the input parameters from our ocean NN 13 

(using OMI RRS cloud parameters). For surface characterization, we use a monthly 14 

climatology of surface broad-band albedo in place of the chlorophyll concentration and 15 

surface wind speed. The albedo product is derived using a combination of CERES and 16 

MODIS observations at 1 degree spatial resolution (Rutan et al., 2009).  17 

Figure 13 shows results from the OMI-derived CERES-trained NN that produces TOA SWF 18 

over land. Statistical comparison with CERES over land provides results similar to those over 19 

ocean. The NN performs well over Asia and parts of Europe and the Americas. The OMI-20 

based NN tends to underestimate TOA SWF over the high albedo desert areas of Northern 21 

Africa, Australia, and also over some regions of South America. Note large differences that 22 

occur in coastal regions may be due to imperfect collocations.  23 

5 Summary and Conclusions 24 

We have developed a neural network approach to estimate TOA SWF based primarily on UV 25 

measurements using the Aura OMI with Aqua CERES data used for training. One year of data 26 

from OMI and CERES has been used to train/validate/analyze several separate neural 27 

networks for different conditions, which together provide estimation of TOA SWF under all-28 

sky conditions. The most important input parameters are effective cloud fraction and sun-29 

satellite geometry. Total column ozone and cloud optical centroid pressure from OMI, as well 30 

as surface-related parameters, provide secondary positive impacts.  31 
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Independent validation at different spatial and temporal scales shows that the OMI NN-based 1 

approach reproduces CERES-derived TOA SWF with high fidelity. Correlation coefficients 2 

for all comparison are > 0.95, and slopes are close to unity. A high percentage of OMI-3 

estimated monthly mean TOA SWF at 0.5o spatial resolution over global oceans (97%) falls 4 

within 15% of CERES. The global mean bias in pixel level data of about -1.4 Wm-2 over 5 

oceans with respect to CERES is likely due in part to errors in OMI cloud parameters that 6 

occur in the presence of absorbing aerosols.  7 

We plan to apply our derived neural networks to long-term well-calibrated UV measurements 8 

from TOMS. The TOMS series provides a long-term data record dating back to late 1978 9 

(about half a decade before the first ERBE launch) with a few small gaps between that time 10 

and the first CERES launch. We should be able to apply NN models derived with 11 

CERES/OMI to TOMS, provided that all of the input parameters are available and 12 

compatible.  In place of actual cloud OCPs that are available from OMI, but not from TOMS, 13 

we could use a cloud OCP climatology that was developed from OMI data for use in the 14 

TOMS total ozone algorithm. The lower spatial resolution of TOMS is not expected to present 15 

any difficulties. This approach can also be extended to the future geostationary missions such 16 

as TEMPO, GEMS and Sentinel 4.  17 

  18 

Acknowledgements  19 

This material is based upon work supported by the National Aeronautics and Space 20 

Administration issued through the Science Mission Directorate for the Aura Science Team 21 

managed by Kenneth Jucks and Richard Eckman. We thank the CERES, OMI, MODIS, and 22 

GEOS-DAS data processing teams for providing the data used for this study. We would also 23 

like to thanks Norman Loeb and Arlindo da Silva for useful discussion and comments during 24 

the preparation of manuscript. 25 

 26 

References 27 

Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2-O2 28 

absorption band at 477 nm, J. Geophys. Res., 109, D05204, doi:10.1029/2003JD003915, 29 

2004. 30 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

16 

Barkstrom, B. R. and Smith, G. L.: The Earth radiation budget experiment: Science and 1 

implementation, Rev. Geophys., 24, 379– 390, 1986. 2 

Barkstrom, B. R.: The Earth radiation budget experiment (ERBE), Bull. Am. Meteorol. Soc., 3 

65, 1110–1185, 1984. 4 

Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Merrelli, A., Schmitt, C., and Wang, 5 

C.: Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths 6 

from 0.2 to 100 µm, J. Quant. Spectrosc. Radiat. Trans., 146, 123-139, 7 

doi:10.1016/j.jqsrt.2014.02.029, 2014. 8 

Bellouin, B., Boucher, O., Haywood, J., and Reddy, M. S.: Global estimates of aerosol direct 9 

radiative forcing from satellite measurements, Nature, 438, 1138–1140, 10 

doi:10.1038/nature04348, 2005. 11 

Bishop, M.: Neural networks for pattern recognition, Oxford University Press, Inc., New 12 

York, 1995. 13 

Bloom, S., da Silva, A., and Dee, D.: Technical Report Series on Global Modeling and Data 14 

Assimilation, edited by: Suarez, M. J., Documentation and Validation of the Goddard Earth 15 

Observing System (GEOS) Data Assimilation System–Version 4, NASA GSFC NASA/TM— 16 

2005–104606, 26, available at: http://gmao.gsfc.nasa.gov/systems/geos4/Bloom.pdf, 2005. 17 

Chevallier, F., Cheruy, F., Scott, N. A., and Chedin, A.: A neural network approach for a fast 18 

and accurate computation of a longwave radiative budget, J. Appl. Meteorol., 37, 1385–1397, 19 

1998. 20 

Deirmendjian, D.:  Electromagnetic scattering on spherical polydispersions, Elsevir Sci., New 21 

York, 290pp, 1969. 22 

Dines, W. H.: The heat balance of the atmosphere, Q. J. R. Meteorol. Soc., 43, 151–158, 23 

1917. 24 

Domenech, C., and Wehr, T.: Use of Artificial Neural Networks to Retrieve TOA SW 25 

Radiative Fluxes for the EarthCARE Mission, IEEE Trans. Geosci. Remote Sens., 49, 1839-26 

1849, 2011. 27 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

17 

Gardner, M. W., and Dorling, S. R.: Artificial neural networks: A review of applications in 1 

the atmospheric sciences, Atmos. Environ., 32, 2627–2636, doi:10.1016/S1352-2 

2310(97)00447-0, 1998.  3 

Gupta, P., and Chirstophe, S. A.: Particulate matter air quality assessment using integrated 4 

surface, satellite, and meteorological products: 2. A neural network approach, J. Geophys. 5 

Res.,114, D20205, doi:10.1029/2008JD011497, 2009. 6 

Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V., Cess, R. D., and Gibson, G. 7 

G.: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget 8 

Experiment, J. Geophys. Res., 95, 18687–18703, 1990. 9 

Hartmann, D. L., Ramanathan, V., Berroir, A., and Hunt, G. E.: Earth radiation budget data 10 

and climate research, Rev. Geophys., 24, 439–468, 1986. 11 

Hatzianastassiou, N., Fotiadi, A., Matsoukas, Ch., Pavlakis, K., Drakakis, E., 12 

Hatzidimitriou, D., and Vardavas, I.: Long-term global distribution of earth's shortwave 13 

radiation budget at the top of atmosphere, Atmos. Chem. Phys., 4, 1217-1235, 14 

doi:10.5194/acp-4-1217-2004, 2004. 15 

Hertz, J. A., Krogh, A. S., and Palmer, A.: Introduction to the Theory of Neural Computation, 16 

Addison-Wesley, Redwood City, Calif., 1991. 17 

Hu, Y., Zhang, H., Wielicki, B., and Stackhouse, P.: A neural network MODIS-CERES 18 

narrowband to broadband conversion, IEEE Geoscience and Remote Sensing Symposium, 19 

3227–32296, 2002. 20 

Jiang, B., Zhang, Y., Liang, S., Zhang, X., and Xiou, Z.: Surface daytime net radiation 21 

estimate using artificial neural networks, Remote Sens., 6, 11031-11050, 22 

doi:10.3390/rs61111031, 2014. 23 

Joiner, J. and Vasilkov, A. P.: First results from the OMI Rotational Raman Scattering Cloud 24 

Pressure Algorithm, IEEE Trans. Geosci. Remote Sens., 44, 1272–1282, 2006. 25 

Joiner, J., and Bhartia, P. K.: The determination of cloud pressures from rotational-Raman 26 

scattering in satellite backscatter ultraviolet measurements, J. Geophys. Res., 100, 23,019-27 

23,026, 1995. 28 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

18 

Joiner, J., Schoeberl, M. R., Vasilkov, A. P., Oreopoulos, L., Platnick, S., Livesey, N. J., and 1 

Levelt, P. F.: Accurate satellite-derived estimates of the tropospheric ozone impact on the 2 

global radiation budget, Atmos. Chem. Phys., 9, 4447-4465, doi:10.5194/acp-9-4447-2009, 3 

2009. 4 

Joiner, J., Vasilkov, A. P., Flittner, D. E., Gleason, J. F., and Bhartia, P. K.: Retrieval of cloud 5 

chlorophyll content using Raman scattering in GOME spectra, J. Geophys. Res., 109, 6 

D01109, doi:10.1029/2003JD003698, 2004. 7 

Joiner, J., Vasilkov, A. P., Gupta, P., Bhartia, P. K., Veefkind, P., Sneep, M., de Haan, J., 8 

Polonsky, I., and Spurr, R.: Fast simulators for satellite cloud optical centroid pressure 9 

retrievals; evaluation of OMI cloud retrievals, Atmos. Meas. Tech., 5, 529-545, 10 

doi:10.5194/amt-5-529-2012, 2012. 11 

Krasnopolsky, V. M., Fox-Rabinovitz, and Belochitski, A. A.: Decadal climate simulations 12 

using accurate and fast neural network emulation of full, longwave and shortwave, radiation, 13 

Month. Weath. Rev., 136, 3683-3695, 2008.  14 

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., Hou, Y. T., Lord, S. J., Belochitski, A. A.: 15 

Accurate and fast neural network emulations of model radiation for the NCEP coupled 16 

climate forecast system: climate simulations and seasonal predictions, Month. Weath. Rev., 17 

138, 1822-1842, 2010.  18 

Kroon, M., Veefkind, J. P., Sneep, M., McPeters, R. D., Bhartia, P. K., and Levelt, P. F.: 19 

Comparing OMI-TOMS and OMIDOAS total ozone column data, J. Geophys. Res., 113, 20 

D16S28, doi:10.1029/2007JD008798, 2008. 21 

Lee, J., Weger, R. C., Sengupta, S. K., and Welch, R. M.: A neural network approach to cloud 22 

classification, IEEE Trans. Geosci. Remote Sens., 28, 846 -85, 1990. 23 

Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., de Vries,  J., 24 

Stammes, P., Lundell, J. O. V., and Saari, H.: The Ozone Monitoring Instrument, IEEE Trans. 25 

Geosci. Remote Sens., 44, 1093–1101, 2006. 26 

Loeb, N. G., Manalo-Smith, N., Kato, S., Miller, W. F., Gupta, S. K., Minnis, P., and 27 

Wielicki, B. A.: Angular distribution models for top-of-atmosphere radiative flux estimation 28 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

19 

from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall 1 

Measuring Mission Satellite, Part I: Methodology, J. Appl. Meteorol., 42, 240–265, 2003. 2 

Loeb, N.G., and Manalo-Smith, N.: Top-of-Atmosphere direct radiative effect of aerosols 3 

over global oceans from merged CERES and MODIS observations, J. Climate, 18, 3506–4 

3526, 2005. 5 

Loeb, N. G., Kato, S., Loukachine, K., and Manalo-Smith, N.: Angular distribution models 6 

for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant 7 

Energy System instrument on the Terra Satellite. Part I: Methodology, J. Atmos. Ocean. 8 

Tech., 22, 338–351, doi:10.1175/JTECH1712.1, 2005. 9 

Loeb, N. G., Kato, S., Loukachine, K., Manalo-Smith, N., and Doelling, D. R.: Angular 10 

distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the 11 

Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation, J. Atmos. 12 

Ocean. Tech., 24, 564–584, doi:10.1175/JTECH1983.1, 2007. 13 

Loeb, N. G., Kato, S., Su, W., Wong, T., Rose, F. G., Doelling, D. R., Norris, J. R., and 14 

Huang, X.: Advances in understanding top-of-atmosphere radiation variability from satellite 15 

observations, Surv. Geophys., 33, 359–385, doi:10.1007/s10712-012-9175-1, 2012. 16 

Loukachine, K., and Loeb, N. G.: Application of an artificial neural network simulation for 17 

top-of-atmosphere radiative flux estimation from CERES, J. Atmos. Oceanic 18 

Technol., 20, 1749–1757, 2003.  19 

Loukachine, K., and Loeb, N. G.: Top-of-atmosphere flux retrievals from CERES using 20 

artificial neural networks, J. Remote Sens. Environ., 93, 381–390, 2004.  21 

McPeters, R. D., Kroon, M., Labow, G. J., Brinksma, E., Balis, D., Petropavlovskikh, I., 22 

Veefkind, J. P., Bhartia, P. K., and Levelt, P. F.: Validation of the Aura Ozone Monitoring 23 

Instrument Total Column Ozone Product, J. Geophys. Res., 113, D15S14, 24 

doi:10.1029/2007JD008802, 2008 25 

Oreopoulos, L., Platnick, S., Hong, G., Yang, P., and Cahalan, R. F.: The shortwave radiative 26 

forcing bias of liquid and ice clouds from MODIS observations, Atmos. Chem. Phys., 9, 27 

5865-5875, doi:10.5194/acp-9-5865-2009, 2009. 28 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

20 

Patadia, F., Christopher, S. A., and Zhang, J.: Development of empirical angular distribution 1 

models for smoke aerosols: Methods, J. Geophys. Res., 116, 1984–2012, 2011. 2 

Patadia, F., Gupta, P., and Christopher, S. A.: First observational estimates of global clear sky 3 

shortwave aerosol direct radiative effect over land, Geophys. Res. Lett., 35, L04810, 4 

doi:10.1029/2007GL032314, 2008. 5 

Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and 6 

Hartmann, D.: Cloud radiative forcing and climate: Results from the Earth Radiation Budget 7 

Experiment, Science, 243, 57–63, 1989b. 8 

Rutan, D., Rose, F., Roman, M., Manalo-Smith, N., Schaaf, C., and Charlock, T.: 9 

Development and assessment of broadband surface albedo from Clouds and the Earth’s 10 

Radiant Energy System Clouds and Radiation Swath data product, J. Geophys. Res., 114, 11 

D08125, doi:10.1029/2008JD010669, 2009. 12 

Stammes, P., Sneep, M., de Haan, J. F., Veefkind, J. P., Wang, P., and Levelt, P. F.: Effective 13 

cloud fractions from the Ozone Monitoring Instrument: theoretical framework and validation, 14 

J. Geophys. Res., 113, D16S38, doi:10.1029/2007JD008820, 2008. 15 

Takenaka, H., Nakajima, T. Y., Higurashi, A., Higuchi, A., Takamura, T., Pinker, R. T., and 16 

Nakajima, T.: Estimation of solar radiation using a neural network based on radiative transfer, 17 

J. Geophys. Res., 116,  D08215, doi: 10.1029/2009JD013337. 18 

van de Hulst, H. C., Irvine, W. M.: General report on radiation transfer in planets: Scattering 19 

in model planetary atmospheres, Mem. Soc. R. Sci. Liege, 7, 78-98, 1963. 20 

Vasilkov, A. P., Joiner, J., Spurr, R., Bhartia, P. K., Levelt, P. F., and Stephens, G.: 21 

Evaluation of the OMI cloud pressures derived from rotational Raman scattering by 22 

comparisons with other satellite data and radiative transfer simulations, J. Geophys. Res., 113, 23 

D15S19, doi:10.1029/2007JD008689, 2008. 24 

Vázquez-Navarro, M., Mayer, B., and Mannstein, H.: A fast method for the retrieval of 25 

integrated longwave and shortwave top-of-atmosphere upwelling irradiances from 26 

MSG/SEVIRI (RRUMS), Atmos. Meas. Tech., 6, 2627-2640, doi:10.5194/amt-6-2627-2013, 27 

2013. 28 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

21 

Veefkind, J. P., de Haan, J. F., Brinksma, E. J., Kroon, M., and Levelt, P. F.: Total ozone 1 

from the ozone monitoring instrument (OMI) using the DOAS technique, IEEE Trans. 2 

Geosci. Remote Sens., 44, 1239–1244, 2006. 3 

Wielicki, B. A., Harrison, E. F., Cess, R. D., King, M. D., and Randall, D. A.: Mission to 4 

planet Earth: Role of clouds and radiation in climate, Bull. Amer. Meteorol. Soc., 76, 2125–5 

2153, 1995. 6 

Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., 7 

Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., 8 

Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based 9 

assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613-10 

666, doi:10.5194/acp-6-613-2006, 2006. 11 

Zhang, J., Christopher, S. A., Remer, L. A., and Kaufman, Y. J.: Shortwave aerosol radiative 12 

forcing over cloud-free oceans from Terra. I: Angular models for aerosols, J. Geophys. Res., 13 

110, D10S23, doi:10.1029/2004JD005008, 2005a. 14 

Zhang, J., Christopher, S. A., Remer, L. A., and Kaufman, Y. J.: Shortwave aerosol radiative 15 

forcing over cloud-free oceans from Terra. II: Seasonal and global distributions, J. Geophys. 16 

Res., 110, D10S24, doi:10.1029/2004JD005009, 2005b. 17 

 18 

  19 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2015-409, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 1 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
 

22 

 1 

Table 1. Statistical analysis of the input parameter selection exercise. The correlation 2 

coefficient (R), Slope (slope), Bias, and standard deviation of OMI-CERES TOA SW flux for 3 

eight different NN models are presented. These numbers correspond to daily inter-comparison 4 

between OMI and CERES TOA SW flux. Data from January 2007 is used for this exercise. 5 

 6 

Model Parameters R Slope Bias 

STD 

(W
m-2) 

a fc_mod 0.971 0.941 0.051 37.1 

b fc_mod,, VZA, RAA 0.979 0.959 0.000 31.4 

c LER, SZA, VZA, RAA 0.979 0.959 -0.030 31.1 

d fc_mod,, VZA, RAA, O3 0.980 0.960 -0.009 30.9 

e fc_mod,, VZA, RAA, OCP 0.981 0.962 -0.004 30.0 

f fc_mod, VZA, RAA, O3, OCP 0.981 0.963 0.002 29.9 

g fc_mod, VZA, RAA, O3, OCP, PW, Wind 0.982 0.964 0.002 29.2 

h fc_mod, VZA, RAA, O3, OCP, PW, Wind, Chl, LER 0.983 0.967 -0.010 28.3 
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Table 2. Statistical parameters corresponding daily and monthly inter-comparisons of pixel 1 

and grid levels TOA SW flux data from CERES and OMI. 2 

 3 

 N R M I BIAS STD EE5% EE10% EE15% 

Pixel 8109323 0.96 0.96 10.5 -1.4 47.7 30 53 69 

Daily 

0.5o 1512726 0.97 0.96 11.2 0.94 34.4 37 62 77 

1o 529679 0.98 0.96 11.2 1.0 27.9 43 69 83 

2o 168181 0.98 0.96 11.0 0.33 23.7 50 76 87 

5o 35454 0.99 0.96 9.2 -1.8 20.3 60 84 92 

10o 10834 0.99 0.97 7.0 -0.0 14.6 69 90 97 

Monthly 

0.5o 108620 0.99 0.98 6.1 1.5 12.9 74 93 97 

1o 28849 0.99 0.98 6.9 1.2 11.4 79 94 98 

2o 7642 0.99 0.96 9.8 0.25 6.6 94 99 100 

5o 1325 0.99 0.96 9.9 -1.8 7.0 95 99 100 

Note: N – Number of pairs, R- correlation coefficient, M- Slope, I- Intercept, Bias – mean of (OMI-CERES in 4 
Wm-2), STD- standard deviation of (OMI-CERES) in Wm-2, EE –Error Envelope for 5%,10%,15% errors. All 5 
flux values have units of Wm-2 6 
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 1 

 2 
 3 

Figure 1. The spectral dependence of the effective cloud fraction for land, fg  =0.5, SZA = 450, 4 

observation at nadir. Red line: ice phase function; Green line: the Heneye-Greenstein 5 

function, Blue line: C1 model. 6 
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 1 
 2 

Figure 2. 2D histogram of effective cloud fraction (ECF or fc) normalized (i.e. fc_mod) with 3 

respect to incoming solar irradiance and CERES TOA shortwave (SW) flux over ocean.  4 
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 2 
 3 

Figure 3. A schematic of the neural network model used for estimation of TOA SW flux with 4 

OMI UV measurements. The table in the bottom lists all the input parameters corresponding 5 

to two NN models used. 6 
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 3 

Figure 4. Monthly mean (January 2007) maps of OMI minus CERES TOA SW flux (%) for 4 

eight different NN models. The letters on the map corresponds to model number in the table 1. 5 
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 2 

Figure 5. 2D histograms of daily CERES and OMI SW flux for month of January 2007. a) NN 3 

is trained and applied to January 2007 b) NN is trained on January 2007 and applied to 4 

January 2006. 5 
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 1 
 2 

Figure 6. Similar to Fig. 5 but showing training (top) and validation (bottom) results from two 3 

NN models (input parameters listed in Figure 3, model h for fc<1 and as in Figure 3 for fc>1) 4 

as final selected models for estimation of TOA SW Flux.    5 
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 2 

Figure 7. Root mean squared errors (RMSE), normalized RMSE (NRMSE in %), data 3 
samples (%), and bias (%) in training and validation data sets as a function of effective cloud 4 
fraction for the data presented in Figure 4.  5 
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Figure 8. 2D histograms of the daily OMI and CERES TOA SW Flux averaged over different 3 

spatial grid sizes for the month of July 2007. a) at OMI’s native pixel resolution b) 0.5x0.5 4 

degree c) 1x1 degree d) 2x2 degree e) 5x5 degree and f) 10x10 degree. The corresponding 5 

statistical parameters are listed in table 2. 6 
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Figure 9. Similar to Fig. 8 but for monthly mean data (July 2007) OMI and CERES TOA SW 3 

flux averaged over different spatial grid sizes. a) 0.5x0.5 degree b) 1x1 degree c) 2x2 degree 4 

d) 5x5 degree. The corresponding statistical parameters are listed in table 2. 5 
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Figure 10. a) Monthly mean (July 2007) spatial distribution of TOA SW flux from CERES; b) 3 

OMI-CERES (in Wm-2); c) OMI-CERES (%); d) histogram of OMI-CERES % . The colors in 4 

(c) correspond to histogram colors in (d).  5 
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Figure 11. Similar to Fig. 10c and d, but with a NN trained using data from the OMI cloud 3 

O2-O2 product. 4 
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Figure 12. a) The daily global mean time series of TOA SW fluxes from NN and CERES and 3 

also shows OMI-CERES (%) on secondary y-axis; b) Mean TOA SW flux from CERES and 4 

OMI averaged along each latitude belt, and also shown OMI-CERES (%) on secondary x-5 

axis. c) same as b but along longitude belts. The data used in b and c are from July 2007. 6 
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Figure 13. Similar to Fig. 10 (a, c, d) except over land.  4 
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